THERMOMECHANICAL BEHAVIOR OF A
MULTICOMPONENT CONTINUOUS MEDIUM
INTERACTING WITH AN ELECTROMAGNETIC FIELD

R. G. Isaev UDC 536.7

The behavior of a homogeneous mixture of isotropic continua interacting with an electromag-
netic field is discussed, It is assumed that the continuum has a simple memory for strains,
temperature, polarization, and magnetization. Constitutive functionals are constructed for
the continuum and a theorem on free energy is proved.

We describe the behavior of a mixture of n isotropic conducting continua using a model of a continuous
medium with internal degrees of freedom [1, 2], taking account of the effect of the average motion of the
microstructure of the medium on its macroscopic behavior. In accord with well-known [3-8] concepts we
define a translational velocity vector v and a particle rotation tensor Q at each point of the medium. The
medium is assumed capable of being polarized and magnetized and has charges, currents, and internal
sources of material such as chemical reactions.

We assume that a body force of density fk is applied at each pomt of a volume v of the continuous
material, and force stresses and electromagnetic stresses described by the vectors sn and T, T, respectively
act on its surface Z.

Basic Laws of Mechanics and Thermodynamics. Omitting the mass and momentum balance equations
because of their triviality we have the following system of balance equations for motions which are contin-
uous except at a finite number of singularities:
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Here ?is the spin inertia tensor [10] gis a third rank tensor of the first stress moments, assumed anti-
symmetrie; J_ is the entropy flux vector. The operations (..) and (...} denote double and triple contrac-
tion respectwe?ly We note that Egs. (1) follow from the basic system of balance equations for continuous
media [9, 10], and include the balance equation for first stress moments known from [10] where a detailed
explanation of the various terms of the equation is given.. The second of Eqs. (1) represents the first law
of thermodynamics taking account of polarization and magnetization, and the third expresses the Clausius

—Duhem inequality [10]. Assuming that in the absence of microstretching of particles ?and-;{; are sub-
jected to antisymmetric boundary conditions we multiply the first of Eqs. (1) by the Levi—Civita alternating
tensor and obtain the balance equation for first moments valid for a narrower class of continua than the
original, but more widely known in practice:
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Equation (2) is the balance equation for internal angular momenta, a possible consequence of the rotational
motion of the particles comprising the system. The right-hand side of (2) contains the moments of the dis-
tributed body and surface forces and the antisymmetric part of the force stress tensor expressed in terms

of the axial vector 11@),

The latter two of Egs. (1) together with the conditions [11]
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lead to the following local Clausius—Duhem inequality
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If condition (2) is taken into account, we can write (5) in the form
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Here oy i is the strength of the internal entropy source arising from factors other than the energy sources b;
EO and Ho are the intensities of the electric and magnetic fields for an equilibrium transformation; @ is the
temperature; x. means that the first factors of the dyads are multiplied vectorially and the second scalarly.

Basic Laws of Electrodynamics, The equations of conservation of charge, the electromagnetic field,
" the conservation of momentum and energy density of the electromagnetic field, and the expressions for the
ponderomotive force and the electromagnetic stress tensor are taken from [12, 131

Construction of Modified Axioms. Basic Theorem of Constitutive Theory for Materials with a Simple
Memory. The construction of constitutive functionals requires the use of the basic axioms of constitutive
theory first proposed by A. Eringen [14, 15] for thermomechanical materials. However, these basic
axioms must be modified for the present investigation to include nonsimple thermodynamic processes for
a model of a polarizable and magnetizable multicomponent continuum in electromagnetic fields.

The axiom of causality must be modified for our conditions so that the independent variables include
not only motion and temperature, but also microrotations, concentrations, and the polarization and mag-
netization per unit mass p and p.

The axiom of determinism must be modified for the nonsimple thermomechanical processes under
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discussion so that the constitutive functionals for II, M, Jq, 1, ®, E, H, and i will depend not only on the

history of the motion and temperature, but also on the history of the change of concentrations, and the his-
tory of rotations, polarization, and magnetization. .

We limit ourselves to the investigation of the practically important case of a simple material with a
simple thermomechanical and electromagnetic memory. By a simple material we mean a material whose
constitutive functionals depend on gradients of no higher than the first order. A material with a simple
memory is one for which the constitutive functionals depend only on the first time derivatives of their
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arguments. Thus in the following discussion the results will be limited to continua composed of media
whose constitutive functionals, by the axiom of ob3ect1v1ty, depend on the following arguments:
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Here V is the del operator; (VV)S is the symmetric part of the displacement vélocity gradient tensor
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X denotes vector multiplication.

We exclude simple memory of concentration on the basis of the axiom of admissibility, since the time
derivatives of ¢, can be found from the equation of continuity.

On the basis of the axiom of equipresence we assume that the remaining "causes," i.e., the depen-
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dent variables M, J4, 7, &, E, H, and i will be functions of the same set of arguments. Consequently on
the basis of the second of Eqs. (1) we have for the Helmholtz free energy & = u—9
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Since (7) shows that the free energy does not depend on the time derivatives of the gradients of &, ¢,
p, and 7, and does not depend on the second time derivatives of the Lemperature and the temperature gra-
dient, and also does not depend on the time derivatives of pp* and pou* and since inequality (8) is linear in
these derivatives, the necessary and sufficient conditions for (8) to hold for any independent variations of
these derivatives are, according to [16], the relations
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Consequently the free energy & is a function of only the following variables: p~ 1 @, VO, cg4 Vr,
p, and p.

We resolve the stress into elastic and dissipative parts:
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We resolve 7 into two parts in the same way:
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The third of Eqs. (13) is obtained if po, is related to the chemical reactions in the system by the
equation po; = BA/®, where B is the rate of a chemical reaction and A = —(p®/11;) (dej/dt) according to [11].
The factors J; and J, stand for variations: Jy =p'p and Jy = - u.

Thus we have proved the following theorem: the necessary and sufficient condition for the local
Clausius—Duhem inequality to be satisfied in simple materials with a simple electromagnetic memory when
Eqs. (12) and (13) hold is that the free energy be a function of the arguments:
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The construction of the entropy balance equation and the linear phenomenological equations will be
developed in subsequent articles,

NOTATION
E is the intensity of the electric field;
H is the intensity of the magnetic field;
T is the conduction current; -
I is the polarization per unit mass;
'Y is the magnetization per unit mass;
Jq is the heat flux vector;
o= Zpk is the density of the mixture;

is the rate of the j-th chemical reaction;
is the concentration of component i;

is the rotation tensor;

is the internal energy density per unit mass;
is the diffusion flux of component k;

is the density of heat sources;

is a third rank tensor of the first stress moments;
is a second rank tensor of the average microsiresses;
is a second rank tensor of the first mass moments;

is the force stress tensor;
is the entropy density per unit mass;
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is the entropy source strength;
is the rotational vector;
is the scalar moment of inertia;

is the couple stress tensor;

is the mass pairs vector;

is an axial vector corresponding to the antisymmetric part of the force stress tensor;
is the partial specific Gibbs function;

is the temperature.

LITERATURE CITED

L. L. Selov, "Models of continuous media with internal degrees of freedom," Prikl. Matem. i Mekhan.,
32, No. 5 (1968).

L. I, Selov, "Mathematical methods for constructing new models of continuous media,"” Usp. Matem.,
Nauki, No. 6, 125 (1965).

H. Grad, "Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary -
number of integrals," Comm. Pure and Appl. Math,, 5, No. 4 (1952).

E. L. Aéro, A. K. Bulygin, and E. V. Kuvshinskii, "Asymmetric hydromechanics," Prikl. Matem.

i Mekhan,, 29, No. 2 (1965).

A. T. Llstrov, "Model of a liquid with a nonsymmetric stress tensor," Prikl. Matem. i Mekhan ,

' 31, No. 1 (1967).

E. F. Afanas'ev and V. N. Nikolaevskii, "TLamellar flow of a suspension of solid particles in a vis-
cous liquid," Izv. SSSR, Mekhanika Zhidkosti i Gaza, No. 2 (1969).

A. S. Poppel', "Hydrodynamics of suspensions," Izv. SSSR, Mekhanika Zhidkosti i Gaza, No. 4 (1969).
V. M. Suyazov, "Nonsymmetric model of a viscous electromagnetic liquid," Prikl. Mekhan, i Tekh.
Fiz., No. 2 (1970).

A. C. Eringen, Mechanics of Continua, Wiley, New York (1967).

A. C. Eringen, "Theory of micropolar fluids," J. of Math. and Mech., 16, No. 1 (1966).

A. V. Lykov and Yu. A. Mikhailov, The Theory of Heat and Mass Transfer [in Russian], Goséner-
goizdat (1963).

P. Mazur and I. Prigogine, Mem. Acad. Roy. Belg. CI. Sei., 28, No, (1953).

P. Mazur and 8. R. de Groot, Physica, 22, 1 (1956).

A. C. Eringen, "A unified theory of thermomechanical materials," Int, J. Engng. Sci., 4, No. 2
(1966).

A. C. Eringen, Introduction to Mechanies of Continua, Mimeo Notes (1962).

‘G. H. Hardy, Inequalities, University Press, Cambridge (1934).



